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Overview

Weak gravitational lensing

¢ The gravity of matter warps the surrounding
space-time and causes distortions in the observed
shapes of the background galaxies.

¢ Powerful probe of the matter distribution in our
universe from coherent patterns of galaxy shapes.

e Numerous current and upcoming WL surveys: DES,
HSC, Euclid, Rubin LSST, Roman, etc.

¢ Traditional analysis based on two-point correlation
functions can only capture limited amount of

information from the weak lensing data. 9 $ ’ @

e Al/ML-based approaches could capture more

information hidden in higher-order correlations!

WE NEED YOU!
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Overview

Weak gravitational lensing

¢ The gravity of matter warps the surrounding
space-time and causes distortions in the observed

shapes of the background galaxies.

Hyper Suprime-Cam (HSC) Subaru
Dark Energy Survey (DES) Strategic Survey

¢ Powerful probe of the matter distribution in our
universe from coherent patterns of galaxy shapes.

e Numerous current and upcoming WL surveys: DES,
HSC, Euclid, Rubin LSST, Roman, etc.

¢ Traditional analysis based on two-point correlation

functions can only capture limited amount of

Euclid telescope

information from the weak lensing data.

e Al/ML-based approaches could capture more
information hidden in higher-order correlations!
WE NEED YOU!

Roman space telescope
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Overview

Weak gravitational lensing

¢ The gravity of matter warps the surrounding s

space-time and causes distortions in the observed

shapes of the background galaxies.
200 A

¢ Powerful probe of the matter distribution in our

universe from coherent patterns of galaxy shapes. -

e Numerous current and upcoming WL surveys: DES,

HSC, Euclid, Rubin LSST, Roman, etc. 100 -

¢ Traditional analysis based on two-point correlation

functions can only capture limited amount of 50 -

constraining power (figure of merit)

information from the weak lensing data.

e Al/ML-based approaches could capture more g :
] ] ) o ] power scattering neural
information hidden in higher-order correlations! spectrum transform network

WE NEED YOU!
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The Challenges of Simulation Based Inference in Cosmology

The need of benchmark dataset

e Many different summary statistics

and ML models are proposed

e Most people test their methods

on their own dataset with different

setups, making it hard to
compare different methods and
understand their pros and cons

Method Name Type Reference Improvement over Two-Point Statistics

Bi (3-point cor ion) Summary Statistic Multiple foundational papers 10-20% tighter constraints; breaks parameter degeneracies
Trispectrum (4-point correlation) | Summary Statistic Multiple foundational papers Further lifts degeneracies; improves error estimation

Peak Counts Summary Statistic Multiple, incl. MCALens Up to 157% improvement with advanced mass mapping

Wavelet Peak Counts / Starlet Transform
Minkowski Functionals

Betti / Persi: I

Probability Distribution Function (PDF)
Void Statistics

Scattering Transform

3PCF Multipoles

Cumulant Correlators, Skew/Kurt-Spectra
C i Neural (CNNs)

Information Maximising Neural Networks (IMNN)
Multiscale Flow (Normalizing Flow)
Simulation-Based Inference (SBI)

Neural Posterior Estimation (NPE)

Neural Likelihood Estimation (NLE)

Diffusion Models

Generative Adversarial Networks (GANs)

Hybrid Summary Statistics (Neural + Physics-based)

Field-Level Inference + SBI (Shear-to-Cosmology)
Nearest Neighbour Stats + Hybrid NN
Combined HOS + Neural Compression

PCA Denoising + ML Compression

'med NN
Lognormal & GPTG Models

Summary Statistic
Summary Statistic
Summary Statistic

Summary Statistic

Summary Statistic

Summary Statistic

Summary Statistic

Summary Statistic

ML Model
ML Model
ML Model
ML Model

ML Model

ML Model
ML Model
ML Model
Hybrid

Hybrid

Hybrid
Hybrid

Hybrid

Hybrid
Hybrid

Multiple wavelet analysis papers
Morphological statistics papers
Topology-based analysis papers
Density field PDF papers

Void analysis papers

Recent mathematical framework
3PCF multipole analysis

Higher-order moment analysis

\[1802.01212], \[1902.03663], \[1906.03156]

\[2407.10877)
\[2403.03490]
\[2409.17975], \[2409.01301]
SBI framework papers
\[2409.17975)
\[2312.00000]

GAN application papers
\[2407.18909)
\[2511.22851]
\[2511.13393]
\[2409.01301]
\[2511.22851]
\[2407.18909)

GPTG modeling papers

Tighter constraints; nearly diagonal covariance

70% tighter constraints when combined with Betti numbers

70% tighter constraints when combined with second moments
Extracts non-Gaussian info inaccessible to 2PCF

Complementary to peaks; adds unique information

Up to 2x higher constraining power than peak counts/CNNs

20% improvement; quadrupole most constraining

Improves parameter constraints; captures non-Gaussianity

2-9x stronger constraints; 4-7x lower parameter scatter

Up to 100% of full-field FoM; outperforms MSE-based (81%)

2.7-7.8x stronger than power spectrum; \~2x higher than peaks/CNNs
Enables high-dimensional stats; combines HOS for improved constraints
Outperforms traditional stats; direct posterior estimation

Best among implicit methods for full-field inference

Outperforms GANSs in denoising (qualitative)

Lower quality than diffusion models for cosmological stats

At least as much as power spectrum, up to 2x in some regimes

\~2x higher FoM than convergence-based; 36.4% over shear 2pt
CDFs nearly 2x better than 2ptCF; 24x more efficient than point cloud methods
30% improvement in Om error, 21% in 08 over power spectrum
36.4% improvement in FoM over standard shear 2PCF

Same/better performance with fewer parameters/simulations

2-5x better than lognormal; matches higher-order stats

(Table generated by ChatGPT)
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The Challenges of Simulation Based Inference in Cosmology

Small training size

e Cosmological simulations are expensive! Each _— e w——— S A I A L
. _ - _ @ ok @® Quijote Suite : : .
simulation evolves hundreds of billions of particles 8 —— Classical N-body : §
from the early universe to the present day < 18 ! : R
= B : : 0 O : =
5 : S -
e In most cases we are in the low training data regime. ?_3 : PR ol g
S' 10°F One SupercomputerYear : W : -
e ML approaches are powerful but can be data-hungry = - N~ 0 g N T
n : : Nog - :
o 10%fF ; ; ase OV d -
e \We need special treatment to reduce the sample O %E 7 pest o :
. N wn- &
complexity: g 10| £ < = .
. B ; = =
o Domain knowledge (e.g., symmetry, summary o : O: =
. « g wn: i
statistics) g 107 %: S 7
o ML techniques (e.g., weight sharing, N ] : | A | K |
ensembles) 10 10-1 100 10! 102
Pre-training Survey Volume [(Gpc/h)?]
@]

Image credit: Matthew Ho
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The Challenges of Simulation Based Inference in Cosmology

TustrisTNG — > IllustrisTNG IustrisTNG — > SIMBA

Distribution shift 050 05
0.45 -
0.40 1 0.4 1
. . . . g
e SBI assumes that the simulations it trained on 8 0357 0s )
: . .S 0301 '
overlap with reality <
~ 0.25
o 0.2
e There are many systematic effects that we don’t have %201
0.15 A 0.1 A
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e Unknown unknowns 1.00 - ] '
g,
0.95 8 "
e Such distribution shift could lead to significant bias in 0.90 nal —
=
data analysis 2 085 124 |y '
2 1 t it t
. : . . o ’”*W:,#”HH’
e This is tackled in Phase 2 (anomaly detection). a8 '
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FVN et al. (2021a)
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The Goals of this Data Challenge

e To encourage groups with expertise in Al and cosmology to develop, test, and validate their model under realistic
SBI setups

e To provide a benchmark that helps the community evaluate the performance of different approaches

e To understand the information content of weak lensing maps (Phase 1)

e To improvement the robustness under distribution shifts (Phase 2)

e To facilitate the deployment of DL approaches into survey analysis pipelines



Weak Lensing ML Uncertainty Challenge

Competition Tasks

The competition tasks are structured into two phases:
* Phase 1: Cosmological Parameter Estimation

Participants will develop models that:

= Accurately infer cosmological parameters (flm, ég)
from the weak lensing image data.

* Quantify uncertainties via the 68% confidence intervals
of the parameters of interest (6a,.,5s,) .

FAIR
. universe

Scoring metrics:

KL divergence between the true Gaussian-like posterior
distribution and the Gaussian with the predicted mean and
standard deviation: 9 9
1 Niest (Qm’l == Q;r;;th) (S’&i — Sg?th)
+

52 52
Neest 5 Qi T Sgi

SCOr€ inference — —

~2 ~2 O . _ (truth 2 G . @truth 2
+ log (aﬂmi) + log (JSS,i) +F A2 QmZ + | S5, SS,z

X = 10%: penalty factor for bad point estimates
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Dataset

® Mock galaxy catalogs predicted with N-body simulations and

ray-tracing algorithms at 101 cosmological parameters (€2,,,, Ss)

® Pixelized 2D weak lensing images: convergence maps

® The model must take into account the systematic
uncertainties from 3 realistic systematic effects

Same cosmology,
different systematics

along with

FAIR
. universe

f Noiseless convergence map
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Dataset Generation Pipeline

Systematic effect
(baryonic feedback, photo-z)

Randomly translate, rotate, and flip
the matter planes

cosmology
random seed
cosmology l

Galaxy'_pos

«(Mpc)

Galaxy' shape

- 7

Galaxy catalog

3000 4000 5000
w(Mpc)

1000 2000

N-body simulations: simulate . .
the matter distribution in our Ray-tracing: simulate
universe the weak lensing signal

Image credit: https://cosmicweb.uchicago.edu/filaments.html -
Pixelize and reconstruct convergence map

https://lenstools.readthedocs.io/en/latest/raytracing.html
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https://lenstools.readthedocs.io/en/latest/raytracing.html
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Dataset

The participants will be provide with:

* Public training set:
= Image data; shape = (101) 256, 1424, 176)
= Label shape = ({01} 256, 5)

= Realizations of cosmological models; each
characterized with 2 parameters of interest (2m, Ss)

256 = Realizations of 3 nuisance parameters

for systematics (1) and (2)

(1424, 176) = Image dimension

5 = 2 parameters of interest (2m,Ss)
+ 3 nuisance parameters for systematics (1) and (2)

* The provided training set is noiseless. Participants can
generate pixel-level noise to augment their training data
using a simple add_noise function we provide

FAIR
. universe

f Noiseless convergence map A
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The participants will be provide with:

¢ Test set:
" Image data; shape = (N, 1424, 176)
N = Number of test images

(1424, 176) = Image dimension

* The test images are generated with random
cosmological parameters, random nuisance
parameters, and random pixel-level noises.

The true parameters (Quth gtruthy of the public test set
are unknown to the participants.
Participants submit their predictions of

* Cosmological parameters (2, Ss)

® Their uncertainties (6, 6s,)

to Codabench, our competition platform.

The model performance was then evaluated with the
hidden ground truth based on our scoring metrics.


https://www.codabench.org/competitions/8934/
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Limitations of the Current Data Challenge

e To make the competition more accessible, we simplified the dataset to reduce the training size below
10 GB (e.g., single redshift bin, one subfield, convergence maps instead of galaxy catalog, ignore some
systematic effects such as IA).

e The loss function is somewhat ad-hoc.

e The public test set on Codabench contains different realizations of the same 101 cosmologies as the
training set, which may have increased the chance of overfitting on the 101 cosmologies when using

the public leaderboard score as guidance for model optimization, although it was not our intention.

e The limited number of cosmological models in the second test set.

e Comments and suggestions are welcome to improve the dataset as a permanent benchmark!
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Phase 1 Final Winners

Leaders in the public leaderboard are further evaluated on a holdout dataset that contains two sets of cosmologies:

= (i) New realizations of the cosmologies that were seen in the the test and training dataset

= (ii) New realizations of the cosmologies that were not seen in the test and training dataset

(i) (ii)

Holdout dataset = Rewarding the Rewarding the

original cosmologies unseen cosmologies

= We present the final results in three separate leaderboards to reward both cases
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Phase 1 Final Winners

1. Final leaderboard evaluated solely on (i):

RANK PARTICPANT FINAL SCORE MEAN MSE (STANDERDIZED)
1st cmbagent 11.7029 0.1033
2nd eiffl 11.6535 0.1038
3rd Shubhojit 11.5987 0.1032

FAIR
. universe

MEAN COVERAGE
0.7000
0.7087

0.6583

We will award the prizes to cmbagent, eiffl, and Shubhojit for extraordinary performance on the original cosmologies.

—_

! Cmbagent — Erwan Allys, Boris Bolliet, Tom Borret, Celia Lecat, Andy Nilipour, Sebastien Pierre, Licong Xu

W

N

Transatlantic Dream Team (eiffl) — Noe Dia, Sacha Guerrini, Wassim Kablan, Francgois Lanusse, Julia Linhart,

Laurence Perreault-Levasseur, Benjamin Remy, Sammy Sharieff,

Andreas Tersenov, Justine Zeghal

" shubhojit - Shubhojit Naskar
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Phase 1 Final Winners

2. Final leaderboard evaluated solely on (ii):

RANK PARTICPANT FINAL SCORE MEAN MSE (STANDERDIZED) MEAN COVERAGE
1st Shubhojit 11.3606 0.0968 0.6619

2nd Tie THUML 11.0511 0.1051 0.6733

2nd Tie jagoncalves 11.0367 0.1073 0.6683

2nd Tie andry834 11.0014 0.1076 0.7228

2nd Tie jhu_suicee 10.9892 0.1067 0.6451

2nd Tie eiffl 10.9883 0.1074 0.6818

We recognize Shubhojit for the achievement in the best model generalization, with a score clearly separated from the other participants.
The other five participants on the leaderboard cannot be separated in a significant way due to the limited samples of (ii).

" shubhojit - Shubhojit Naskar
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Phase 1 Final Winners

3. Final leaderboard from the average of the score obtained on (i) and (ii):

RANK PARTICPANT FINAL SCORE MEAN MSE (STANDERDIZED) MEAN COVERAGE
1st Shubhojit 11.4796 0.1000 0.6601
2nd eiffl 11.3209 0.1056 0.6953
3rd THUML 11.2848 0.1060 0.6789

We will award the prizes to Shubhojit, eiffl, and THUML for demonstrating excellent performance on both new and old cosmologies.

—_

" shubhojit - Shubhojit Naskar

u ]
-

W

N

Transatlantic Dream Team (eiffl) — Noe Dia, Sacha Guerrini, Wassim Kablan, Francgois Lanusse, Julia Linhart,
Laurence Perreault-Levasseur, Benjamin Remy, Sammy Sharieff,
Andreas Tersenov, Justine Zeghal

\¥ THUML - Mingsheng Long, Yuezhou Ma, Haonan Shangguan, Yuanxu Sun, Huikun Weng, Haixu Wu, Hang Zhou
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Phase 1 Jury Prizes & Special Mentions

Transatlantic Dream Team (eiffl) — Noe Dia, Sacha Guerrini, Wassim Kablan, Francgois Lanusse, Julia Linhart,
Laurence Perreault-Levasseur, Benjamin Remy, Sammy Sharieff,
Andreas Tersenov, Justine Zeghal

For their illuminating analysis of diverse approaches on tackling the limitations of this challenge

Cmbagent - Erwan Allys, Boris Bolliet, Tom Borret, Celia Lecat, Andy Nilipour, Sebastien Pierre, Licong Xu

For their novel approach leveraging an Al agententic workflow for science

W andry834 - Andry Rafaralahy
azhang81 - Anday Zhang

For their innovative methods and model architectures for this challenge

&, Congratulations to all the winning teams!
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Final Submitted Phase 1 Solutions

' ' ' ' ' Architecture: CNN-based, ViT-based
13

Hybrid Feature Extraction: Combined deep learning with fixed
12 | . mathematical or physics-based extractors (e.g., Scattering Transforms,
Handcrafted Cosmology Features)

9 Advanced Inference: Used methods beyond direct regression, such
8 as Simulation-Based Inference, Normalizing Flows, or MCMC sampling
to estimate posteriors

Number

5 Specialized Training: Unique optimization strategies like
Reinforcement Learning, Denoising U-Nets, Robust Outlier Filtering,
4F T Custom Loss functions, or Post-hoc Uncertainty Calibration

2 b 2 2 1 Al-Agent Assisted: Explicitly utilized Large Language Models (LLMs)
or automated agents for code generation and architecture search

= Data Augmentation: Geometric, Domain-specific synthetic

v\’% Note: The best score achieved by higher-order statistics on the public
s & W X leaderboard seems to be 9.1654 (43th place)
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Competition Tasks

The competition tasks are structured into two phases: Scoring metrics:

* Phase 2: Out-of-Distribution Detection Binary cross-entropy:

Participants will develop models that: 1 N
. . . . i = i1 DInD.i 1—1vy;)log (1 — pup
= |dentify test data samples inconsistent with the training " % T Ny 22: [ys1og (Prup,i + €) + (1 — i) log (1 — Prap,; + €) ]
distribution (OoD detection).
where pmp ; € [0,1], y; = 1 if the dataset is InD, y; = 0 if the dataset is OoD,

* Provide probability estimates indicating data conformity v e o el e s @i ity o et e et Gl — 69

to training distributions.
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Phase 2 Dataset

The participants will be provide with:

* Public test set:
* Image data; shape = (6000, 1424, 176)

BOBB = Number of test images

(1424, 176) = Image dimension

= A fraction of test data will be generated with different
physical models (OoD), leading to some distribution shifts
with respect to the test data in Phase 1

* Final dataset may be subject to change

Participants will submit their predictions of in-distribution
(InD) probability of each test instance to our Codabench.

The model performance was then evaluated with the hidden
ground truth labels (y=1 for InD; y=0 for OoD) based on our
scoring metrics.
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Phase 2 Dataset

The participants will be provide with:

* Public test set:
* Image data; shape = (6000} 1424, 176)

- = Number of test images

(1424, 176) = Image dimension

* A fraction of test data will be generated with different
physical models (OoD), leading to some distribution shifts
with respect to the test data in Phase 1

* Final dataset may be subject to change

[ Universe

Can you tell which instances below are OoD?
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Phase 2 Example Baselines

Autoencoder Phase-1 baseline
Reconstruction error Chi-square distribution
__) “l —
2 T -1
X" (©) = [dobs — p(©)]" Cov™(0) [dons — p(O)]
Probablhstlc _ " Probabilistic
Encoder Decoder
Summary statistic:
> matter power spectrum, CNN outputs...
le—-5
Vi M [ train
- Ik = | test 10D
0" T test OoD 0.107 3 T2 test OoD
3.0 1 r .
L Then use Sellke—Bayarri-Berger - 1
227 ] method to calibrate p-value to i
HHE . B . -
2.0+ Al obtain a lower bound of the 0.06 1
d ~=! Bl o
15 ! R Bayes Factor .
Pru = 0.04 4 oy
101 i - di LT_"-
AL - 0024 |I 0 .
0.5 - T = o : 4 Tremy
(- 7 - F 1 .
o i LT 0.00 - . = e y
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Phase 2 Status and Timeline

Pre-register for the Phase 2 competition today! Phase 2 competition website on Codabench

e Please register with your affiliation/company email address.

e Not yet open for submission. But you will receive a notification
when the Phase 2 officially starts!

e More information will be available on Codabench soon.

Tackle impactful cosmology problem and win our monetary prizes!

Envisioned competition schedule (UTC)

Competition Phase Date Description
Mid December 2025 — Mid March 2026 Open submissions
Phase 2 Mid March 2026 — End March 2026 = Evaluating top submissions on hidden dataset

End March 2026 Announcement of winners




